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Phosphate glass-ceramic-titanium particulate composites have been prepared by hot-pressing 
and their thermal, elastic and mechanical properties have been measured. Results have been 
then explained using various theoretical models for thermal properties, elasticity and fracture 
mechanics of particulate composites. It is shown that the thermal and elastic mismatches 
between glass-ceramic matrix and titanium could produce a microcracking of materials. This 
microcracking could explain both fracture characteristics and discrepancies between 
theoretical and experimental values of elastic moduli. 

1. I n t r o d u c t i o n  
Composite materials have been a subject of intensive 
interest during the last four decades. The goal for 
development of such materials has been to achieve a 
combination of properties not achievable by any of 
the elemental materials acting alone. Many potential 
applications exist for these materials, such as military 
devices, wear-resistant materials, internal combustion 
engine parts and biomedical materials [1]. 

In this last field, calcium alumino-phosphate glass- 
ceramic-metal particulate composites have been pro- 
posed to act as thermal and elastic graded seals be- 
tween various dense metal cores of prostheses and a 
porous phosphate glass-ceramic coating [2, 3]. 

While composites have been used in engineering 
applications, the operating conditions under which 
such materials have to function led to the science of 
composite materials. That means fundamental studies 
on interactions between components: matrix, re- 
inforcement and particularly the role of the interface 
[4]. It also deals with the basic understanding of 
deformation behaviour, strength and toughness. 

In all these fields, a lot of work has thus been 
already performed on glass-glass, ceramic-glass or 
glass-metal particulate composites. Most studies have 
dealt with the strength-controlling factor and/or the 
effect of microcracking on elastic behaviour [5 11]. 
However, these parameters have hardly yet been 
studied for the phosphate glass-ceramic-metal com- 
posites previously proposed for orthopaedic appli- 
cations [-2, 12]. Only their method of synthesis has 
been investigated in detail. Their thermal and elastic 
properties have been measured, mainly to ensure that 
they lay within those of the phosphate glass-ceramic 
matrix and those of the corresponding metallic 
reinforcement (titanium, 316 L stainless steel, cobalt 
chromium 788 alloy). 

It has therefore turned out that detailed studies on 
thermal and elastic behaviour and fracture mechanics 
of these composites would be useful for a better know- 
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ledge of these materials. This paper deals with phos- 
phate glass-ceramic-titanium composites. 

2. Materials and experimental 
procedure 

2.1. Base products and preparation 
of composites 

The parent calcium alumino-phosphate (CAP) glass is 
prepared from a mixture of calcium bis-dihydrogen 
phosphate and hydrated aluminium orthophosphate. 
It is melted in a Pt 10% Rh crucible at 1300 ~ for 
2h, then crushed into a powder with a particle size 
lower than 50 gm. Titanium is a commercial product 
(Baudier-Poudmet). The composition and properties 
of parent glass, glass-ceramic and titanium are sum- 
marized in Table I. 

Seven mixtures of CAP glass with increasing vol- 
ume fractions (from 3.5 to 50%) of titanium particles 
are vacuum-hot-pressed into composite discs of about 
5 mm thickness. The "flash pressing" method is used; 
details have been given in previous papers [2, 13]. 
Pressure is removed as soon as samples are totally 
sintered. They are then kept at 700 ~ for 1 h to obtain 
total ceramization of the matrix. Two or three discs of 
each composition are thus prepared. 

2.2. Methods of measurement 
2.2. 1. Thermal properties 
Linear thermal expansion is measured with a diff- 
erential dilatometer (D.I. 10-2, Adamel-Lhomargy) 
using vitreous silica as reference material. Measure- 
ments are made from room temperature to 750 ~ at a 
linear heating rate of 3 ~ min-1. From the recorded 
curves, one can deduce [2]: 

(i) the relative expansion A L / L  o of the samples at 
each temperature, and 

(ii) the average linear thermal expansion coefficient 
~r2-r, between two temperatures T1 and T 2. 
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T A B L E  I Composit ion and properties of materials for the 
preparation of CAP glass-ceramic titanium composites 

Composition CAP CAP Titanium 
and properties glass glass-ceramic 

Composit ion (wt %) 
P205 69 69 - 
CaO 22.7 22.7 - 
A120 3 8.3 8.3 - 
Ti - - >~ 96 

Density (gem -3) 2.64 2.65 4.5 

Average 
linear 
expansion coefficient 
(10 6 o C -  1 ) 

~2o-soo 9.3 16.7 8.9 
C~2o_70 o 16.4 9,0 

Young's modulus 64 68 1 t0 
(GPa) 

Poisson's ratio 0.256 0.180 0.340 

Fracture stress 53.9 146.7 536 
(MPa) c~ v = 454 

Fracture toughness 0.78 2.22 
( M P a m  1/2) 

Average radius of ~< 50 - 10 
particles (pm) 

2.2.2. Elastic properties 
Elastic properties are determined using a resonance 
dynamic method based on the magnetostrictive effect 
[2, 14]. The specimen resonators may be chosen either 
as square-shaped bars or discs. Only Young's modulus 
can be measured using square-shaped bars; discs are 
used for the determination of both Young's modulus 
and Poisson's ratio. The knowledge of two elastic 
constants allows one to calculate the others [2, 15]. 

2.2.3. Mechanical properties 
Flexural strength o- R is measured on 1.5 mm x 3 mm 
x 15 mm bars. They are tested in three-point bending 

with a 12 mm span in an Instron machine operating at 
a loading rate of 0.1 mm rain- 1. All measurements are 
made in air at room temperature. For  each composite, 
seven to sixteen specimens are fractured. 

With 2 mm x 4 m m x  24 mm bar specimens, frac- 
ture toughness K~c is determined using the three-point 
bend test of a single-edge notched bend (SENB) speci- 
men over a 16 mm span. A notch as thin as possible of 
about 1.3 mm depth is machined at the midpoint of 
one 24 mm edge of each specimen. 

Samples (two to nine for each composite) are tested 
at a crosshead speed of 0.05 mmmin -1. All meas- 
urements are carried out in air at room temperature. 

Fracture toughness is calculated from specimen di- 
mensions, notch depth and fracture load E2, 16]. As 
was shown previously [16, 17], such conditions allow 
one to reach the "true" K~c factor. It has also to be 
noticed that the SENB technique gives an initiation 
toughness [16, 18, 19]. 

The knowledge of K~c and ~R allows calculation 
of other mechanical characteristics: critical flaw size 
ao and fracture energy F. 

Critical flaw size (the size of the defect from which 
the fracture starts) may be obtained from [20, 21] 

ac = ( ~ - K ' ~ c )  2 C 5 R  J (1) 

where Y is a dimensionless term that depends on the 
crack depth and the test geometry [16], and Z is 
another dimensionless quantity that depends on the 
configuration of the crack [20]. For a straight 
through-thickness crack (Griffith flaw) [22, 23] 

1.21 

For a penny-shaped crack [22, 24] 
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In the case of plane strain, F is given by [10] 

K?c 
F - 2E (1 - v 2) (2) 

where E = Young's modulus and v = Poisson's ratio. 
Since F is directly calculated from K~c determined by 
the SENB method, it is also an initiation energy and 
does not take into account energy-dissipative mech- 
anisms, which occur during fracture propagation. 

To use this equation, it is previously necessary to 
ensure that a condition of plane strain is really ob- 
tained and also that the strain cannot be relieved by 
general plastic deformation. These conditions are ful- 
filled if [17, 23] 

- " \ ~ v /  - " \ c y v /  

where crv = yield stress. 
The ratio K~c/cy v is generally a very small number 

for ceramic materials due to limited plasticity [ 19] and 
also for such composites [25] these equations are thus 
nearly always satisfied. 

3. Results and discussion 
3.1. Thermal properties 
The expansion curves of titanium composites (Fig. 1) 
show a shoulder between 100 and 200 ~ which is due 
to 0 ~  [3 transformation of the A1PO~ cristobalite 
form [26-28]. Sometimes, other features occur at 
higher temperatures. As an example, expansion of 20 
and 37% titanium composites increases sharply from 
about 700 ~ (Fig. 1). This could be due to a foaming 
produced by gas emanating from titanium at high 
temperature. 

The average linear thermal expansion coefficients 
have been calculated between 20 and 500 ~ 20 and 
700~ respectively. They decrease as a function of 
titanium volume fraction, cv, since ~Ti is much lower 
than aCAP (Table I). 

Most experimental values of azo_ 5oo lie within the 
curves of Turner [29, 30] and Kerner [30, 31], which 
predict theoretical evolutions of ~ as a function of Cp 
and in terms of the thermal and elastic properties of 
the components (Fig. 2a). Some values of 0~20_ 7oo lie 
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Figure 1 Linear thermal expansion of CAP glass-ceramic-titanium 
composites. 

below the Turner lower bound (Fig. 2b); they cor- 
respond to samples which have an expansion curve 
showing features at high temperature. 

3.2. Elastic properties 
Young's modulus increases with the volume fraction, 
%, of titanium. The experimental results (Table II) 

have been compared with values given by various 
models. These expressions predict the theoretical 
evolution of Young's modulus of composites as a 
function of the volume fraction of the second phase 
and from the elastic properties of individual com- 
ponents [7, 31-34]. Most of them assume that strains 
and stresses are totally transferred from one phase to 
the other, which requires both a close contact between 
matrix and particles and no microcracking of mater- 
ials. These models have representative curves lying 
within two limits. The upper-bound Voigt model [32] 
assumes that the composite solid is behaving as a 
constant-strain system. The lower-bound Reuss model 
[33] considers the composite as a constant-stress 
system. 

Fig. 3 shows that most experimental values fall 
below Reuss's lower bound, which means that one or 
both conditions noticed above are not fulfilled in the 
glass-ceramic-titanium system. 

In these composites, the coefficient of thermal 
expansion of the matrix is much higher than that of 
titanium (Table I). A residual stress field is developed 
within and around particles as the body cools from 
ceramization (700~ to room temperature (20~ 
Assuming titanium particles as spherical, each of them 
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Figure 2 (a, b) Theoretical and experimental average linear thermal expansion coefficients of CAP glass-ceramic-titanium composites. 

TAB L E I I Elastic and mechanical properties of CAP glass-ceramic-titanium composites 

Titanium Young's Poisson's Fracture Fracture Critical flaw size (tam) Mean free path 
fraction modulus ratio stress toughness (gm) 
(vol %) (GPa) (MPa) (MPa m 1/2) Griffith flaw Penny-shaped 

crack 

0 68 0.180 146.7 2.22 60 145 - 
3.5 69.5 0.185 154.9 2.47 67 162 368 
6 70 0.199 149.5 2.40 68 164 209 

10 71 0.195 157.7 2.39 60 145 120 
20 71.5 0.203 122 2.24 89 215 53 
30 73 0.209 122.1 2.14 81 196 31 
37 77 0.220 123.3 2.32 93 225 23 
50 80 0.229 121.1 2.38 101 244 13 

5 6 6 6  



_ 100 o 0. 
m = 

8o  
E w 
g- 

#- 60 

Hashin & Shtrickma V ~  

~ Reuss 

0 2'0 40 dO 8'0 100 
Volume fraction (~ 

Figure 3 Theoretical and experimental Young's modulus of CAP 
glass-ceramic titanium composites. 
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will be subjected to a uniform hydrostatic pressure, 
which can be estimated by [35] 

( "~ 1 ~ ?Vp'~ -1 
Po = A~AT 1 Vm + (4) 

2E m Ep ] 

where As = a m -  %, AT = difference between cera- 
mization and room temperature (680~ vm, Vo 
= Poisson's ratio of matrix and particles, respectively, 

and Era, Ep = Young's modulus of matrix and par- 
ticles, respectively. Substituting reported values from 
Table I into Equation 4 then gives 

Po = 434 MPa 

This pressure probably ensures the contact between 
matrix and particles. However, thermal and elastic 
mismatches between both phases also induce radial 
stress O'rr and tangential stress cY00 in the matrix 
[10, 36]: 

- o , r  = 2o00 = Po (5) 

where R = radius of the particle and r = distance 
from the centre of the particle. 

The tangential stress outside particles, if sufficiently 
high, can initiate radial cracks originating from the 
particle-matrix interfaces [5, 10, 36-38]. This micro- 
cracking could thus explain the fall in Young's moduli 
[11, 39], provided it eventually occurs. 

The possibility of crack initiation is governed by the 
magnitude of the stress intensity factor, K~, at the 
cracks associated with the particles. If K~ exceeds the 
critical value Klc m for the matrix, then the cracks will 
extend. K~ can be estimated using the analysis of 
Krstic and Vlajic [36]. 

In this analysis, each radial crack is considered to be 
a part of a major crack, i.e. a part of the total crack 
length, which consists of the length of the cavity in 
which the particle is embedded and a small annular 
crack (Fig. 4). It is then assumed that the crack is kept 
open by the uniform thermoelastic stress, Po, which 
acts along the particle-matrix interface and by a dim- 
inishing tangential stress, which acts on annular crack 
surfaces. The total stress intensity factor, KI, is thus 
found to be a function of the particle size, R, the level 
of internal stress, Po and the ratio of the grain to flaw 

Figure 4 An annular flaw associated with a spherical particle under 
thermoelastic stress (from Krstic and Vlajic [36]). 

size, R/a, as given by the expression [36] 

2PoR~/2 ~/2 KI -- 7[1/2 {(aR~) - [ I  - ( |  - R2~1/21 a v }  ] 

~ L ( R ) 3 / 2 ( 1 -  R2~1/2~ 
2 \ a J a~ ] j (6) 

Rearranging Equation 6, a critical grain size R c, below 
which crack initiation cannot occur, can be deduced: 

Rc - rcK2 { ( e ) - l / 2 [ 1 -  ( 1 -  2 ~2 j j 

+ 2 \ a ]  ~ - j  j (7) 

Equations 6 and 7 assume that a cannot be lower than 
R. In other words, the ratio R/a of grain to flaw size 
cannot be higher than unity. Assuming that R/a tends 
to this limit, then 

2Po R 1/2 
[Kl]tim = 71:1/2 (8a) 

or rcK 2 
IRe] li m -- 4p 2 (8b) 

Substituting reported values for the glass-ceramic- 
titanium system, i.e. Po = 434 MPa and K~ = K~c m 
= 2.22 M P a m  1/2, then Equation 8b gives 

[Rc]li m = 20.5 gm 

Crack initiation should not occur since measurement 
of the average titanium particle size by laser granulo- 
metry gives 10 gin. This could be the reason why 
microcracks have never been observed. However, 
dropping of elastic moduli could not then be easily 
explained. 

In practice, titanium particles are not spherical; 
their sharp-cornered shape could increase stress con- 
centrations at the angles and their size could have 
been underestimated by the method of measurement, 
which gives an equivalent spherical diameter (ESD). 
In the microcracking mechanism, such a diameter is 
not necessarily the best value to consider since it never 
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relates to the true major particle dimension [40]. 
Moreover, the glass-ceramic matrix is not homo- 
geneous at a microscopic scale. These assumptions 
can be translated in terms of Equation 8: 

(i) Increase in stress concentrations at the angles 
amounts to local enhancements of Po- 

(ii) The effective particle radius really reaches more 
than 10 gm. 

(iii) The use of KIC m measured for the matrix as- 
sumes that perturbations due to-the microstructure 
are negligible, which is not necessarily valid. It has 
been shown that the K~c measured with a large flaw 
can be much higher than the local effective critical 
stress intensity factor [41, 42]. 

Plots of [K~]um as a function of Re for various Po 
values (Fig. 5) show that, for [Rc]li m equal to 10 pm: 

(i) P0 should reach more than 622 MPa, if K~ is 
taken equal to the critical stress intensity factor meas- 
ured for the matrix (2.22 MPaml/2).  

(ii) A pressure Po of 434 MPa leads to a [K~]l~ m of 
1.55 MPa m 1/z. KlC m should then be divided by at least 
1.5. This is not unrealistic since a ratio of more than 3 
has already been found, in ceramic materials, between 
the stress intensity factor and the local effective critical 
stress intensity factor [41]. 

Therefore, microcracking has every chance to occur; it 
is likely to be due to one or more of the causes 
previously described. Once microcracks have been 
initiated, the increase of a (decrease of R/a) induces a 
rapid decrease of K~ (Fig. 6), which no longer reaches 
the effective Klcm; the crack is then arrested. As an 
example, assuming an  effective radius of 15 gm, local 
pressure Po of 500 MPa and KIC m of 2 M P a m  1/2, 
Fig. 6 shows that the crack is arrested as soon as R/a 
is 0.98 (close to unity). The length c of the annular 
crack beyond the particle-matrix interface (Fig. 4) is 
then not higher than 0.31 pm. It is still too small to be 
seen by optical microscopy. 
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Figure 6 The stress intensity factor as a function of relative crack 
length. R - 15 gin, P0 = 500 MPa. 

The presence of microcracks has thus been detected 
indirectly by elastic modulus measurements [39]. It is 
then interesting to calculate the microcrack density, 
Nm, corresponding to the decrease of E. For  a random 
array of penny-shaped cracks of radius a, it has been 
shown that Young's modulus is given by [11, 39] 

E = E o 1 + ~ N m  a3 (9) 

where E 0 = Young's modulus of the uncracked mater- 
ial. Introducing R/a in Equation 9 and rearranging: 

9 (R 3(Eo ) 
N m = 16-R3\a  j L ~ -  1 (10) 

This density is compared with the number of titanium 
particles Nvi per unit volume, which is estimated from 
the formula for a random dispersion of equally sized 
spheres, radius R [39]: 

3@ (11) 
NTi --  4rtR 3 

E 

~c 

10 

Po = 7 0 0 ~  

2~0 Rc 3~0 

Figure 5 The variation of limiting stress intensity factor with radius 
of particles for various pressures. 

where Cp = volume fraction of particles. Dividing 
Equation 10 by Equation 11 

X m  --  3~  ( e ) 3 ( ~  ~ 0  - 1 )  (12) 
Nxi 4% 

Fig. 7a and b show the evolution o fN  m and Nm/NTi as 
a function Of Cp for R equal to 15 gm and R/a to 0.98, 
and assuming that E o corresponds to the average 
between upper and lower bounds of the Hashin and 
Shtrickman model [34]. 

3.3. Mechanical properties 
Mechanical properties (Table II) have been studied as 
a function of titanium volume fraction %. The vari- 
ations have been related to results deduced from the 
studies of elastic properties. 

The evolution of fracture toughness and fracture 
energy (Fig. 7c and d) can be related both to that of 
the microcrack density N m (Fig. 7a) and the ratio 
Nm/NTi (Fig. 7b), and interpreted in terms of the sug- 
gestions of Miyata et al. [43]. 
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Figure 7 Fracture properties of CAP glass-ceramic-titanium com- 
posites: (a) density of microcracks; (b) ratio of microcrack density to 
the number  of titanium particles per unit volume; (c) fracture 
toughness; (d) fracture energy. 

The initial increase up to 3.5%, then the constancy 
up to 10% can be explained by the low density of pre- 
existing microcracks in this region. The energy 
absorption mechanisms consist essentially of stress- 
induced microcrack formation rather than propa- 
gation of pre-existing microcracks. In such a case, the 
increase in K,c is not very important. At the same 
time, the strength shows a slight increase (Fig. 8) due 
to the higher elastic modulus of the dispersed phase 
and also to the introduction of the matrix-particle 
interface. However, these effects are negligibly small 
[43]. Microcrack coalescence has little chance to 
occur and fracture is probably due to an inherent 
critical flaw in the matrix, the size of which is in 
Table II for various configurations. 

From 20% inclusions, the microcrack density be- 
comes high (6 to 10 times higher than previously) and 
the ratio Nm/NTi reaches more than 60% (Fig. 7a and 
b). The high density of microcracks combined with the 
decrease of interparticle spacing (taken equal to the 
mean free path: see Table II of Fullman [44]) makes it 
easier to propagate the primary crack by the micro- 
crack-microcrack and primary crack-microcrack 
coalescence mechanisms [43]. Then K~c and F reach 
the lowest values (Fig. 7c and d). From this volume 
percentage of 20%, subcritical inherent flaw-micro- 
crack or microcrack-microcrack linking can also oc- 
cur prior to catastrophic failure [20, 42]. The strength 
is then determined either by tfae extension of a flaw 

'~ 180 t 

~-~ 14 O;-.----~--~'" ;~" "'- , 

L " "'" -~ 

1~176 ' 6 2'o 310 ' 4'0 5J0 
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Figure8 Fracture stress of CAP glass-ceramic-titanium com- 
posites. 

larger than the initial inherent flaw [20] or by inter- 
action and coalescence of multiple microscopic cracks 
[42]. As a result, the curve of the strength (Fig. 8) 
exhibits a discontinuity between 10 and 20% inclu- 
sions, due to the change in the fracture mechanism. 
From this last volume percentage, cy R remains nearly 
constant at a Value lower than the fracture stress of 
glass-ceramic (Fig. 8) and the calculated critical flaw 
size (true [20] or apparent [42]) increases sharply 
(Table II). 

Beyond 30% inclusion, the microcrack density no 
longer increases significantly. The ratio Nm/NTI de- 
crease from 60 to 40% while the average distance 
between particles still decreases (Table II). The linking 
mechanism then requires that the isolated micro- 
cracks propagate round particles to join inherent 
flaws or other microcracks. This new energy ab- 
sorption process, known as a "high energy crack- 
propagation process" [45], again increases K,c 
and F. However, inherent flaw microcrack or 
microcrack-microcrack coalescence mechanisms are 
always subcritical. Fracture occurs for the same true 
or apparent critical flaw size as previously and cy R does 
not increase again (Fig. 8). 

4. C o n c l u s i o n  
Glass-ceramic-titanium composites could be ob- 
tained from mixtures of a calcium alumino-phosphate 
parent glass and various volume fractions (up to 50%) 
of titanium particles. They have been prepared by hot- 
pressing using the "flash pressing" technique. 

Their elastic moduli measured by dynamic methods 
have been found lower than values given by most 
theoretical expressions, which has led to the con- 
clusion that microcracking occurs in these composites. 
Such a phenomenon allows us to explain both elastic 
and mechanical properties. However, crack initiation 
has been assumed to originate from the particle- 
matrix interface and described using the analysis of 
Krstic and Vlajic [3@ It has also been considered as a 
spontaneous phenomenon due to thermal and elastic 
mismatches alone. In this context, some additional 
causes of microcracking have had to be assumed as 
accompanying the mismatches: underestimation of 
particle radius, local increase of hydrostatic pressure 
and local decrease of critical stress intensity factor. 

Some other mechanisms could still be considered, 
relating to the true effect of the matrix. Anisotropies 
between its two crystalline phases (AIPO4 and 
Ca(PO3)2) [3, 46, 47] should be considered [42]. It is 
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also well  k n o w n  tha t  phase  t r a n s f o r m a t i o n s  can  in t ro -  

duce  stresses; in the  p re sen t  case  c e r a m i z a t i o n  o f  the  

v i t r eous  phase  in to  g l a s s - ce ramic  [48]  and  ~ [3 

t r a n s f o r m a t i o n  o f  A 1 P O  4. M o r e o v e r  af ter  ce ramiz -  

a t ion ,  ma te r i a l s  a re  c o o l e d  d i rec t ly  to  r o o m  t e m p -  

e r a tu r e  w i t h o u t  any  a n n e a l i n g  t r e a tmen t ,  which  c o u l d  

a lso  p r o d u c e  stresses. C o n s i d e r i n g  all these  stresses 

ac t ing  as an  app l i ed  stress, the  e q u a t i o n  o f  Krs t i c  and  

Vlaj ic  c o u l d  be  m o d i f i e d  to i n t r o d u c e  this a d d i t i o n a l  

stress [49],  wh ich  increases  the  p r o b a b i l i t y  of  c rack  

in i t i a t ion .  

A n o t h e r  poss ib i l i ty  w o u l d  cons i s t  of  a s s u m i n g  tha t  

m i c r o c r a c k i n g  occurs  ins ide  the  mat r ix .  T h e  pressure  

due  to t h e r m a l  m i s m a t c h  w o u l d  p l ay  the role  of  the  

app l i ed  stress [49].  I t  w o u l d  then  p r o d u c e  e i the r  a 

p r o p a g a t i o n  of  p re -ex i s t ing  m i c r o c r a c k s  in the m a t r i x  

o r  f o r m a t i o n  of  m i c r o c r a c k s  u n d e r  this a d d i t i o n a l  

app l i ed  stress. In  b o t h  cases  a fall of  e las t ic  m o d u l u s  

w o u l d  be o b s e r v e d  due  to an  increase  e i ther  o f  the  

c rack  size o r  m i c r o c r a c k  dens i ty  ( E q u a t i o n  9). C h e c k s  

of  these  h y p o t h e s e s  w o u l d  need  to  h a v e  m o r e  d a t a  

a b o u t  the  m a t r i x  itself. 

T h e  ana lys i s  o f  Kr s t i c  and  Vlaj ic  gives  a sa t i s fac to ry  

e x p l a n a t i o n  of  the  o b s e r v e d  p h e n o m e n a ;  howeve r ,  it is 

based  on  an  a x i s y m m e t r i c a l  stress d i s t r ibu t ion ,  wh ich  

is no t  necessar i ly  the  best  a p p r o x i m a t i o n  to  a s s u m e  

for  l a te r  loca l  v a r i a t i o n s  o f  h y d r o s t a t i c  p ressu re  o r  

toughness .  T h e o r i e s  based  on  c racks  o c c u r r i n g  at  pre-  

fer red  l o c a t i o n s  o f  the  pa r t i c l e  m a t r i x  in ter face  o r  

in its v ic in i ty  [50, 51] w o u l d  then  be pe rhaps  m o r e  

sui table .  
All  these  n e w  h y p o t h e s e s  to  exp la in  m i c r o c r a c k  

f o r m a t i o n  will be  the  ob jec t  of  s u b s e q u e n t  in- 

ves t iga t ions .  H o w e v e r ,  it is a l r e ady  in te res t ing  to  n o t e  

that ,  w h a t e v e r  the  h y p o t h e s e s  on  m i c r o c r a c k i n g ,  once  

it is a s sumed ,  its c o n s e q u e n c e s  for e las t ic  a n d  m e c h a n -  

ical  p r o p e r t i e s  will  n o t  be  m o d i f i e d  s ign i f ican t ly  wi th  

respec t  to  t hose  desc r ibed  in this paper .  
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